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Example C 
Consider, as a last example, the rather pathological 

potential 

In this case, we can define $s{k,r) and ip8'(k,r) by 
Eqs. (3.1) and (3.2). It can be verified that the two 
Born series converge, and Eqs. (3.3)-(3.6) and (1.8) 

I. INTRODUCTION 

MANY authors have discussed threshold effects, or 
cusps, in elementary particle reactions, including 

the case of a threshold for the production of an unstable 
particle.1"4 Questions naturally arise as to whether 
these threshold effects can be responsible for sizeable 
peaks in cross sections; and if so, whether such peaks 
should be classified as elementary particles or as 
phenomena of an essentially different character. The 
purpose of this paper is to call attention to a situation 
in which threshold effects do indeed produce sizeable 
peaks; namely, when there exists a pole in the S matrix 
close to an S-wave threshold on the unphysical sheet 
reached by passing through the branch cut associated 
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hold. Thus, for this potential, all the properties of a 
regular potential are obtained even though it does not 
satisfy Eq. (1.2). 

Note added in proof. We want to thank Dr. M. B6g 
for drawing our attention to a paper by N. Limic 
[Nuovo Cimento 26, 581 (1962)] which contains the 
statement that for singular potentials the S-matrix 
element for given / is the limit of the quotient of two 
Jost functions. 

with the threshold. Moreover, we conjecture that this 
situation is very likely to be responsible whenever a 
threshold effect manifests itself as a peak comparable 
to those associated with particles. From the point of 
view of 5-matrix theory, a threshold effect of this nature 
can quite properly be called a particle since it arises 
from a pole in the S matrix. 

In Sec. II, we shall discuss these points in more detail 
by considering some examples. The simplest example, 
given in Sec. IIA, of the type of threshold effect we are 
discussing is the "virtual state" occurring in the lS state 
of the neutron-proton system. In Sec. IIB, the case of 
two channels involving only stable particles is discussed, 
and in Sec. IIC, two channels where one of the particles 
in the second channel is unstable. The latter case is an 
extension of the work of Nauenberg and Pais.3 In 
Sec. I l l , we consider threshold effects within the 
framework of a dynamical model, using the matrix 
ND~l formalism. Some clarification is thereby obtained 
of the work by Ball and Frazer on peaks in cross 
sections near the threshold for production of an un­
stable particle.2 Lastly, in Sec. IV we discuss some 
possible experimental manifestations of threshold 
effects, 
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Two-channel processes are studied to determine whether sizeable peaks can be produced in elastic scat­
tering for one of the channels by threshold effects arising from the second channel (taken to be in an 5-wave 
state). The problem is first examined by means of a simple model whose analytic properties can easily be 
deduced. It is found that, when all the particles are stable, large cusps occur if there is a pole of the 5 matrix 
on an unphysical sheet in the vicinity of the inelastic threshold. The cusps become "woolly" when one of 
the particles in the second channel is allowed to be unstable. Similar results are obtained in a calculation 
using an NLf1 formulation. These 5-matrix poles correspond to virtual states of the particles in the in­
elastic channel, their positions on the unphysical sheets depending on the force of interaction between the 
particles. It is further suggested that some of the peaks observed in experiment may be of this type, having 
their origins in inelastic thresholds rather than direct particle resonances. In particular, the F0* at 1815 
MeV and the K\K\ peak near threshold may be manifestations of this. 
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FIG. 1. The k plane 
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II. EXAMPLES OF THRESHOLD EFFECTS RESULTING 
FROM NEARBY POLES 

A. Single-Channel Case 

The most familiar example of an S-matrix pole close 
to a threshold on an unphysical sheet is the "virtual 
state" of the ̂  neutron-proton system. We shall remind 
the reader of the nature of the singularities near 
threshold in this simple example because of their 
similarity to the more involved cases to be discussed 
later. 

The threshold behavior of the partial-wave amplitude 
M = eiS sin5/£, where'A is the center-of-mass momentum, 
is given by the scattering length formula 

M(k) = (-(l/a)-ik)-K (2.1) 

The function M(k) is analytic in the complex k plane 
in the vicinity of k=0 except for the pole at k=ix0, 
where x0=l/a. There are, of course, many other 
singularities in the complex k plane, but we are in­
terested here only in the behavior at threshold. 

The scattering length a is negative for the XS n-p state 
0 « — 23.7X10"13 cm), and so the pole at k=ixQ lies in 
the lower half-plane, as shown in Fig. 1(a). When the 
k plane is mapped onto the s plane, where s=4(k2+m2)f 

the upper-half k plane becomes the first (or physical) 
sheet, whereas the lower-half k plane becomes the 
second (or unphysical) sheet. The position of the pole 
on the unphysical sheet is shown in Fig. 1(b), where the 
arrow illustrates a path which can be followed to reach 
the pole from the physical region. This pole on the un­
physical sheet in the *S amplitude is often called a 
"virtual state."5 

In the *S state, however, the scattering length is 
positive (a«5.4X10~13 cm), and the pole lies on the 
physical sheet. This, of course, corresponds to a bound 
state of the n-p system, the deuteron. 

Consider now the difference in the physical effects of 
bound and virtual states having x0 equal in magnitude, 

5 J. M. Blatt and V. W. Weisskopf, Theoretical Nuclear Physics 
(John Wiley & Sons, Inc., New York, 1952), p. 68. 

but opposite in sign. As far as the total cross section is 
concerned, there is no difference in the physically 
accessible region s>4:tn2. The two cases, however, are 
very different in the unphysical region along the real 
s axis below threshold in the first sheet. This region is, 
of course, inaccessible to experiments, but it exhibits 
behavior similar to that found in the two-channel case 
to be considered next. To evaluate the amplitude in 
this region, one can make the continuation k—>ix, 
where x is real and positive, and obtain the formula 

M-^x-xo. (2.2) 

The resulting function \M |2 is plotted in Fig. 2. For 
the bound-state case, shown below the threshold by the 
dashed line, there is, of course, a pole at s=4(m2—x0

2). 
For the virtual-state case, there is no pole but instead 
a large cusp at the threshold s=4:m2. This is the type of 
threshold effect referred to in the Introduction, resulting 
from a nearby virtual-state pole. 

B. Two-Channel Case, All Particles Stable 

The considerations of the previous section can now 
be generalized to the more interesting case of threshold 
effects in two-channel scattering problems. We consider 
in this section only two-particle channels, all the 
particles being spinless and stable for the present. We 
also examine only orbital angular momentum Z=0 
states since threshold effects are stronger in this 
situation. 

Let Tij be the partial-wave scattering matrix for the 
Z=0 state, normalized such that, in the physical region 
between the two thresholds, 

ru( j ) = c*8lsin^i/*i. (2.3) 

Here 5 is the square of the total energy in the center-of-
mass system; ki and &2 are the cm. momenta in the 
two channels whose thresholds will be denoted by S\ 
and $2, respectively. 

As in the one-channel case, the threshold behavior 
can be seen easily from a scattering-length formula. One 
defines a matrix M by the equation 

Mijis^i^h+ik&j. (2.4) 

It is well known, and can easily be shown to follow from 
the unitarity condition, that the matrix elements Mij(s) 
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K below threshold for 
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are free from singularities at the thresholds s^ and can 
therefore be expanded in a Taylor series. The scattering-
length formula results from keeping only the first term; 
that is, the Ma are taken to be real constants. Such a 
formula is valid, of course, only in a small region since 
it ignores all but the threshold singularities, but this 
is quite adequate for our purposes. We obtain for the 
T matrix 

T11(s)=(M22-ik2)/D(s), (2.5a) 

T12(s)=-M12/D(s), (2.5b) 

T22(s)=(Mn-ik1)/D(s), (2.5c) 
where 

D(s)= (Mu-ikJiMv-ik^-MnK (2.6) 

In the region between the two thresholds on the real 
axis, it is convenient to define the real, positive quantity 
K2 such that k2—ix2. Since we are interested in the effect 
of a pole near s2, we require a zero of KeD(s) at a point 
sr on the real axis between the thresholds. Let %2r be the 
value of x2 at s=st. Then the condition that ReD(sr) = 0, 
implies that 

Mn(M22+x2r) = M12
2. (2.7) 

To cast the equations into a more familiar form, we 
define 

7i=(M22+x2r), 7 2 = M n . (2.8) 

Then we obtain 

D(s)= (x2~x2r)(y2—ik1)—iy1ku (2.9) 

Tn(s)= (yi+M2-M2r)/D(s), (2.10a) 

T12(s)=-(yiy2yi*/D(s), (2.10b) 

T22(s)=(y2-iki)/D(s). (2.10c) 

From Eq. (2.9), we see that if 7i<K72, there will be a 
pole of T near the real axis at x2~x2r. I t follows from 
the Schwarz reflection principle, or directly from 
Eq. (2.9), that there is a pair of poles, symmetric about 
the real axis. 

We will now describe the topology of the Riemann 
surface of T, and investigate which sheet of this surface 
the pole lies on. The surface has four sheets, which can 
be specified as follows in terms of the angles 6\ and 62 

shown in Fig. 3 : 

sheet I : O<0 i<2x , 
O < 0 2 < 2 T T ; 

sheet I I : 27r<0i<47r, 
O < 0 2 < 2 T T ; (2.11) 

sheet I I I : 27r<0i<47r, 

27r<02<47r; 

sheet IV: O<0!<27r, 
2 X < 0 2 < 4 T T . 

We have attempted to depict these four sheets in 
Fig. 4, where we show three cross sections of the 

FIG. 3. The s plane 
with elastic and in­
elastic cuts. 
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Riemann surface. All four sheets join at the branch 
point s2. Note that, except at this point, sheet IV has 
no direct connection to the physical region. 

One can easily determine on which sheet of D(s) the 
zeros lie. This is outlined in the Appendix. I t is shown 
there that poles close to the real axis in the vicinity of 
the inelastic threshold cannot occur in sheets I or I I I , 
but lie in sheets I I or IV. 

The case of a pole in sheet I I close to s2 was studied 
by Dalitz and Tuan for the 7rF, KN system.6 This pole 
was given the name "KN bound state."7 In general, 
we shall refer to a pole in sheet I I near s2 as a bound 
state of the particles in channel 2. Since sheet I I is 
directly accessible from the physical region for s±<s<s2, 
a pole on this sheet manifests itself as a resonance in 
the channel 1 scattering process. 

On the other hand, a pole in sheet IV manifests itself 
in a manner analogous to the virtual state discussed 
in Sec. I IA; namely, as a large cusp at s2. We shall refer 
to a pole in sheet IV close to s2 as a virtual state of the 
particles in channel 2.7 

Examples of the two cases are shown in Fig. 5, and 
the corresponding path of the pole as x2r is varied is 
drawn in Fig. 6. We have illustrated the situation by 
using the channels w+N and p+N with the p meson 
stable. In the figures, the inelastic threshold is therefore 
at (W—M) — mp=5Amir. A pole in sheet IV produces a 
cusp in channel 1 scattering at the energy s2. The height 
of the cusp increases as the pole position is taken closer 
to the real axis in sheet IV. As the pole crosses the real 
axis (just above s2) and moves into sheet I I , the cusp 
attains the unitarity limit and becomes a rounded 
resonance peak whose position changes as the pole 
moves away from s2 in sheet I I . 

We have also drawn in Fig. 5 the corresponding in-

, B ' 
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FIG. 4. The four 
sheets of Tij(s) and 
their interconnection 
on crossing the real 
s axis. 
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(a) 

(b) 
6 R. Dalitz and S. Tuan, Ann. Phys. (N. Y.) 10, 307 (1960). 
7 Dalitz and Tuan (Ref. 6) in fact used the name "virtual bound 

state." We drop the word "virtual" since we wish to use it in the 
sense in which it is used in Ref. 5 and Sec. IIA of this paper. 
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FIG. 5. Cusps and reso­
nance peaks (solid lines) 
for the elastic amplitude 
I hTn(s) |2 ; the dashed 
lines are the corresponding 
ine las t ic c o n t r i b u t i o n s 
k1k2\T12(s)\* = l(l-r)*) 
with 0<77<1. The param­
eters have the values 
T l = 1.0, 72 = 10.0, while 
% 2 r =-0 .7 , - 0 . 1 , 0.5, and 
1.0 for the cases indicated 
by 1, 2, 3, 4, respectively. 
Peaks 3, 4 attain their 
elastic unitarity limit 1.0, 

elastic contribution kik2\ Z
1i2|2=i(l—if), where uni­

tarity imposes the restriction 0<77<1. There is a rapid 
square root rise for energies just above the inelastic 
threshold. 

To avoid possible confusion, we conclude this section 
by comparing the model just discussed with the models 
advanced in criticisms of the work of Oakes and Yang8 

by a number of authors.9 These authors found that 
resonance poles near inelastic thresholds may occur in 
more than one sheet, whereas the case we discuss 
involves a conjugate pair of poles on one sheet only. 
The difference lies in our having taken the My as real 
constants, whereas in the model of Dalitz and 
Rajasekaran,9 for example, the Ma have a zero associ­
ated with the resonance. The distinction between these 
two cases has been made quite explicitly by Dalitz.10 

C. Two-Channel Case, One Particle 
Unstable: Woolly Cusp 

The way to generalize the formulas of the preceding 
section to the case where an unstable particle is pro­
duced has been pointed out by Nauenberg and Pais,3 

and by Ball, Frazer, and Nauenberg.11 To make the 
notation more tractable, we deal with a particular 
example, namely the two channels w+N and w+ir+N 
in which the two pions emerge as a p meson. The 5i/2 
and Dz/2 states of the pion-nucleon system are the 
interesting ones, since it is those which coup]e to a p—N 
state of zero orbital angular momentum. Here, in order 
to illustrate the calculations simply, we consider only 
the 5i/2 state, leaving the more realistic D3/2 situation 
to Sec. IV. The only change needed in the preceding 
formalism is the replacement of k2 by the appropriate 
phase-space factor for a pN state, given in Eq. (3.9) of 

8 R. J. Oakes and C. N. Yang, Phys. Rev. Letters 11, 174 (1963). 
9 D. Amati, Phys. Letters 7, 290 (1963); R. H. Dalitz and G. 

Rajasekaran, Phys. Letters 7, 373 (1963); R. J. Eden and J. G. 
Taylor, Phys. Rev. Letters 11, 516 (1963); M. Nauenberg and 
J. C. Nearing, ibid. 12, 63 (1963); M. Ross, ibid. 11, 450 (1963). 

10 R. H. Dalitz, Rev. Mod. Phys. 33, 471 (1961). See, also, p. 
475, articles (a) and (b). 

11 J. Ball, W. Frazer, and M, Nauenberg, Phys. Rev. 128, 478 
(1962). 

Ref. 11, that is k2(s) —•> P2(s,yP) where 

1 p r ( (7 -4 ) 3 - | i /2 
P2(s,yp) = - / dak2(s,cr)\ 

7T J 4rnJ L a 

x-
J T P 

(m2-a)2+y2(<r-4:Y/4a 
, (2.12) 

and where k2(s,a) is the center-of-mass momentum of 
a nucleon and a particle of mass \/<r, 

tk2(s,<T)J= [ > - {W+mYJjy- (IV-M^/As, (2.13) 

with W=s^2. Actually, p2( ,̂Tp) differs from Eq. (3.9) 
of Ref. 8 in that here the upper limit is 00. As discussed 
by Nauenberg and Pais, this corresponds to the absence 
of 6 functions in the hi of Eq. (2.4).3 

Although the integral over a in Eq. (2.12) is formally 
divergent, it is to be interpreted in the sense that only 
the contribution of the p-meson peak is to be included. 
We are attempting to include only that portion of the 
TTTTN state in which the two pions are produced as a p 
meson. 

Nauenberg and Pais have observed that for a narrow 
resonance (YP<<C1), one can reduce p2(s,yp) to a simple 
approximate form valid in the region around W= m-\-mp 

by setting a=mp in those factors of (2.12) which are 
slowly varying and letting the lower limit go to — <*>. 
One thus obtains 

P2(s,yP)~LHs,tnP
2)+idJ12 (2.14) 

= Ci((*24+«*)1/2+W)]1/2 

+CK(*2M-#)1 /2-W)]1 /2 , (2.15) 

where 5 is given by 

b=[2mmp/{m+mp)'}A, (2.16) 

and A is the half-width of the p meson. Unfortunately, 
the narrow-width approximation is not very good for 
the p (or even, we find, for the i£*), so we shall continue 
to use Eq. (2.12), evaluated numerically, in the 
examples we present. 

From Eq. (2.12), we can easily see that there is a 
branch point of P2, and hence of Ty, at s= (w+2mr)

2. 
Of more interest is the branch point associated with p 
production at s=sp, where sp= (m+mp~iA)2, which can 
most easily be identified in Eq. (2.14). The existence 

ImW/m, 

t 

-0.2 

5.2 

—0.2 

K2r=1.0 

t 

5.3 

K2r = -0.7 

K2r = 2.5 

5.4 t' 
„ - - ' K2r=-1.0 

ReiW-Ml/m^-^ 

FIG. 6. Path of the pole in sheets II (solid line) and IV (dashed 
line) as x2r is varied, with 71 = 1.0 and y2 = 10.0. The path of the 
simultaneous complex conjugate pole is not marked. The inelastic 
threshold occurs at (W—M)/mir=mp/mir=SA. 
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of this threshold was first pointed out by Blankenbecler, 
Goldberger, MacDowell, and Treiman,12 and has 
recently been demonstrated more rigorously within the 
framework of 5-matrix theory by Zwanziger13 and by 
Gunson.14 In the remainder of this section, we shall 
discuss the effects of 5-matrix poles near this threshold. 
The relevant branch cuts of T#(s) are shown in Fig. 7. 
The branch point at s=sp lies on the sheet reached by 
continuing from the physical region in the vicinity of 
s=mp

2 down into the lower half-plane. In analogy to 
the case discussed in the previous section, we designate 
this as sheet III. If one then continues on through the 
cut starting at sp, one reaches another sheet which we 
shall call sheet III'. The fact that there is a conjugate 
branch point at (m-\-mp+iA)2 follows directly from 
Eq. (2.12), or from the Schwarz reflection principle. 

By analogy with the two-channel, stable-particle 
case discussed previously, we shall call a pole lying 
near sp in sheet III a pN bound state, and in sheet III ' 
a pN virtual state. The pN bound-state pole appears in 
the physical region as an ordinary resonance since 
sheet III is directly accessible from the physical region, 
whereas the virtual-state pole produces a large "woolly 
cusp," somewhat different in shape.15 

FIG. 7. The s plane 
with the branch 
points on sheet III 
at s=(m-\-mpdziA)2 

arising from the un­
stable p meson. 

s PLANE 

(mtmTr)2 (m^m^Z 

(m+m^+iA)2 

w//////////////// 
m + m/"iA) 2 

Figure 8 shows how, as the pole on sheet III ' moves 
towards the branch point at sp and passes into sheet III, 
a woolly cusp grows at the inelastic threshold, eventu­
ally reaching the unitarity limit and moving to the left 
as a resonance. The inelastic contribution is likewise 
smoothed out. The extent of the woolliness of course 
depends on the unstable p-meson width, and this is 
demonstrated in Fig. 9 where several values of yp where 
been considered. 

We have thus shown that the pN virtual-state pole 
produces a woolly cusp which can be high and narrow 
enough to be comparable with more conventional un­
stable particle peaks. But in this case, which we feel is 
the only case in which a woolly cusp will attain such 
proportions, the woolly cusp is not a phenomenon 
essentially different from the ordinary resonance. The 
only difference, as we shall discuss in the next section, 
is that in the virtual-state case the forces are slightly 

12 R. Blankenbecler, M. Goldberger, S. MacDowell, and S. 
Treiman, Phys. Rev. 123, 692 (1961). 

« D. Zwanziger, Phys. Rev. 131, 888 (1963). 
14 J. Gunson, University of Birmingham, November 1962 

(unpublished). 
16 Although we follow Nauenberg and Pais very closely in this 

section, one difference should be noted. Our formulas are essen­
tially the same down to their Eq. (2.35) of Ref. 3. Following this 
equation, they make an approximation which is invalid in the case 
of interest to us here, the virtual-state case. 

FIG. 8. Elastic peaks with 
corresponding inelastic con­
tributions for an unstable 
p meson with narrow width 
yp = 0.02. The parameters 
are 71 = 1.0, 72= 10.0, and 
X 2 r = _ 0 . 7 , - 0 . 1 , 0.5, 1.0 
for the cases 1, 2, 3, 4, 
respectively. In the figure, 
peaks 3, 4 attain their 
unitarity limits. 

Ik^fs)! 

5.0 5.2 5.4 5.6 

weaker than in the bound-state case. This would not 
seem to be a sufficient reason for making a fundamental 
distinction. A pole which manifests itself as a woolly 
cusp certainly seems entitled to be placed on a Regge 
trajectory, or included in any other classification scheme 
for the elementary particles. Similar remarks apply to 
the mechanism proposed by Ball and Frazer in connec­
tion with the higher resonances in pion-nucleon scatter­
ing,2 but we shall defer a detailed discussion to the next 
section. 

III. BOUND AND VIRTUAL STATES IN THE 
ND~l FORMALISM 

In this section we shall re-examine within the matrix 
T=ND~1 formalism the bound- and virtual-state poles 
discussed in Sec. II. The purpose is to investigate the 
motion of the pole as the nature and strength of the 
force is varied. The case of a strong force in an off-
diagonal channel is particularly interesting, since it was 
pointed out by Ball and Frazer that the force arising 
from one-pion exchange in the reaction w+N—^p+N 
is very strong in the TTN DZJ2 state. This strong force is 
undoubtedly influential in producing the iVi/2* at 
1512 MeV. 

For the sake of illustration, we shall again outline 
our procedure using the channels TV+N and p+N, 
taken in D- and 5-wave orbital angular momentum 
states, respectively. The ND~l equations have been 
derived in Ref. 11 and also by Cook and Lee.16 In 

FIG. 9. Variation of peak 
width for different values of 
the p-meson width. The peaks 
have TI = 1.0, 72= 10.0, x2r 
=0.5, and 7, = 0.01, 0.05, 0.15 
for cases 1, 2, 3, respectively. 

~5I 53 5.6 

(W-M)/m,r" 

16 L. F. Cook and B. W. Lee, Phys. Rev. 127, 283 and 297 
(1962). 
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!/jTn(s)| 

and 

FIG. 10. Elastic peaks and 
corresponding inelastic con­
tributions with only the 
ofl-diagonal interaction. 
Here yp = 0.33, i?n = 0, 
^22 = 0, ^i2=— 4Q0mv

2, and 
the residue Rn has the 
values #i2 = 3.2X104, 3.4 
X104, 3.8X104 for cases 1, 
2, 3, respectively. Peak 3 
attains its unitarity limit. 

addition, we shall make the greatly simplifying approxi­
mation of representing the left-hand cuts in each 
reaction by a single pole term, of the form Rij/(s—Sij).17 

Let us start by considering only the effect of the off-
diagonal interaction R12, that is, take Rn=0=R22. The 
equations for N and D reduce to 

Nu(s) = R12D21(si2)/(s-s12), 

N12(s) = R12D22(s12)/(s-s12), 

N21(s) = R12Dn(s12)/(s-s12), 

N22(s)== RnDuisu)/(s-sn), 

(3.1) 

and 

D11(s)=l-Ri2D2i(s12)U(sJsl2), 

Dn(s)= ~Ri2D22(s12)U(s}s12), 

ftiW= ~Ri2Du(s12)V(s,s12), 

D22(s)=l-R12D12(s12)V(s)s12), 

(3.2) 

where U, V are the integrals 

U(s,Sij) = ~ I dsr--I 
w J ( 
l r 
7T J ( 

Pi(s') 

7T y (ikf+m^)' 

ds'~ 
(^+2/^^)2 (S' — S)(s' — Sij) 

The phase-space factors p$-(s) are taken to be18 

1 / & i ( * ) \ 5 

Pi0) = —' -
8lA\A 

17 I t may be noted that, in nonrelativistic potential scattering, 
a pole term on the left corresponds to an Eckart potential in the 
Schrodinger equation [V. Bargmann, Rev. Mod. Phys. 21, 488 
(1949)], For large distances, an Eckart potential behaves as a 
Yukawa potential. 

18 By taking pi (s) of the form indicated, we have introduced 
through the 1/s2 factor two extra poles at the origin. This factor 
however is necessary in order to make the integrals U(s,Sij) 
convergent for a Z>-wave ir-{-N state. These extra poles, which are 
required to compensate for the factor 2 /+1, may be regarded as 
representing the "centrifugal barrier" interaction. 

I r^s-M)2 *2(^,cr)r(o—4f»,2)«-|1 /2 

p 2 ( » = - / da — 

x-
\ip 

(mp
2-a)2+yp

2(a-~^m^y/4:a ' 

where k2(syo) is expressed in (2.13), and a Breit-Wigner 
formula has again been used to describe the unstable 
spin-1 p meson. We have mp=5AmT, and a p width of 
100 MeV yields 7p« 0.33. 

The above equations were evaluated numerically with 
various values of S12 and Ri2, care being taken to avoid 
ghosts.19 The most noticeable feature coming out of the 
calculations is the behavior of the elastic scattering 
amplitude Tu(s) as the residue R\2 is increased: a peak 
in |pi7\ i(s) |2 gradually develops in the vicinity of the 
threshold energy s~ (M+mp)

2. For values of R±2 less 
than a certain value Rt (with S\2 held fixed), none of 
the corresponding peaks attain the maximum heights 
allowed by unitarity; while for R12 greater than Rt, the 
peaks do reach their unitarity limits and move to the 
left with increasing Ri2. This is illustrated in Fig. 10, 
where we have also drawn the inelastic contributions 
P1P2I Ti21

2. 
The ND~l equations (3.1) and (3.2) can easily be 

generalized to incorporate the diagonal terms Ru and 
R22. I t was found that a peak for fixed R12 was not 
affected much by Rn (taken sufficiently small so as not 
to give rise to a direct resonance in the Tu amplitude). 
On the other hand, R22 had quite an appreciable 
influence. Increasing R22 has a similar effect to increas­
ing JR12, as indicated in Fig. 11. 

These results are analogous to those obtained in 
Sec. IIC, and it seems very likely that the peaks in the 
above NDr~1 formulation have a similar origin to those 
in Sec. I I . The residues Ru and R22 represent the force 
of interaction in the p+N state. As this force gradually 

l/VT„(s)l2 FIG. 11. Elastic peaks 
and corresponding in­
e l a s t i c contr ibutions 
with 7 P = 0 . 3 3 , £ i i=0 , 
Si2= - 4 0 0 ^ , J2i2 = 3.2 
X104, s22 = 0, and R22 
= 0, 33, 130 for cases 1, 
2, 3, respectively. Peak 3 
attains its unitarity 
limit. 

4.5 5.0 5.5 
(W-Ml/m,,--

19 For Rn sufficiently large, namely Ri2> [*7 ($12,̂ 12) V(si2,sn)]-1, 
the matrix elements Ti3-(s) develop a spurious pole singularity 
which moves in from the left along the negative real s axis as R12 
is increased. This corresponds to a "ghost" and not to a bound 
state, since its binding energy is initially infinite and then becomes 
smaller as the interaction Ru is taken larger. 
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becomes stronger (increasing R12, R22), a pole corre­
sponding to a pN virtual state approaches the branch 
point at s= (M+mp+iA)2 on sheet I I I ' , producing a 
woolly cusp in the elastic-scattering cross section. 
Simultaneously of course a complex conjugate pole 
approaches s= (M+fnp—iA)2. For a sufficiently strong 
force, the pole moves through to sheet I I I , forming a 
real pN bound state. At all stages, the height and 
position of the peak depends on the position of the 
pole: the latter in turn depends on the force of inter­
action between the p meson and the nucleon. 

The model considered above permits us to gain 
further insight into the nature of the phenomenon 
investigated by Ball and Frazer.2 These authors found 
that a sufficiently rapidly rising inelastic amplitude 
(such as at the threshold for w+N—> p+N) would 
produce a peak in the elastic scattering. Equation (3) 
of their paper is applicable to the above model as long 
as Ru=0. In Fig. 10, case 1, one sees a peak associated 
with an inelastic amplitude which rises rapidly to 
nearly the unitarity limit.20 In the Ball-Frazer treat­
ment, it was not clear whether such a peak was associ­
ated with a pole in the S matrix, whereas in the present 
model this is indeed the case. I t follows also from Fig. 9 
that such a peak is the same phenomenon as the "woolly 
cusp" of Nauenberg and Pais,3 since the peak de­
generates into an ordinary cusp as the width of the p 
meson is decreased to zero. 

Moreover, we believe that these conclusions are quite 
general. The formulas we have used in this and the 
preceding section should provide an adequate repre­
sentation of the scattering amplitudes in a small region 
around the production threshold. 

IV. POSSIBLE EXPERIMENTAL MANIFESTATIONS 

In the preceding sections, we have demonstrated 
how an elastic-scattering process may have a sizeable 
peak due to the effect of an inelastic channel when 
there is a bound or virtual state of the inelastic channel 
in the vicinity of its threshold. Simultaneously, there 
is a rapid rise in the cross section for the inelastic 
reaction. I t is natural to ask therefore whether any of 
the many peaks in the experimental data are of this 
type. We discuss some possible candidates. 

A. The K&! Threshold Anomaly 

I t has been observed experimentally that the cross 
section for the reaction w+ir—> K+K in the 1=0, 
S-wave state is large just above its threshold21: this 

20 In cases 2 and 3 of Fig. 9, one sees that, as the strength i?i2 of 
the interaction is increased and the peak moves away from the 
pN threshold, the magnitude of the inelastic amplitude just above 
threshold decreases. Equation (3) of Ball and Frazer is still valid 
for this situation, but the peak is no longer directly associated 
with a rapidly rising inelastic cross section. 

21 A. R. Erwin, G. A. Hoyer, R. H . March, W. D . Walker, and 
T . P . Wangler, Phys . Rev. Let ters 9, 34 (1962); 10, 204(E) (1963); 
G. Alexander, O. I . Dahl , L. Jacobs, G. R. Kalbfleisch, D . H. 
Miller, A. Ri t tenberg, J. Schwartz, and G. A. Smith, ibid. 10, 460 

- W(BeV) 

F I G . 12. Cross section for / = §— K~p scattering with 71 = 1.0, 
72 = 0.025 and ^ = 0 . 0 9 . Tota l width of K* is taken as 50 MeV. 
Experimental points are those of Bastien et al. ( • ) and Sodickson 
et al. ( O ) (Ref. 21) wi th a background subtract ion of 15 m b . 

probably corresponds to the situation where there is a 
pole close to the KK threshold. Unfortunately, the data 
for both this inelastic reaction and elastic TT scattering 
at these energies is as yet too inaccurate to determine 
whether this effect might be due to a virtual state of the 
K1K1 system, or a bound state. The two cases are easy 
to distinguish if the pole is not too close to the KK 
threshold: the bound-state pole appears as a peak at 
the pole position in elastic ww scattering; the virtual-
state pole is observable only as a threshold anomaly. 

I t seems to us that there is no reason to regard a 
virtual state as less fundamental than any other entries 
in the list of elementary particles. The only criterion 
available to us, on the basis of present theories, for 
deciding whether a peak in a cross section should be 
called a particle is whether or not it is associated with 
a pole in the S matrix. Neither a virtual-state pole nor 
an ordinary resonance pole is on the physical sheet, 
but this is not usually regarded as a fundamental 
distinction. 

B. The JV1/2* (1512 MeV) 

I t was suggested by Ball and Frazer2 that the #3/2 
second pion-nucleon resonance iVi/2* at 1512 MeV 
might be associated with the opening of the p-produc-
tion channel. This idea has been developed by several 
authors.11'16-22 Since the one-pion exchange force in the 
off-diagonal channel reaction w+N—> p+N is very 
strong, it seems likely that this mechanism plays an 
essential role in the formation of the iVi/2*. I t is clear 
however from the fact that the pN threshold lies around 
1690 MeV, that the Nitj* must be a pN bound state, 
rather than a pN virtual state. (The distinction between 
an ordinary elastic resonance and a bound state of the 

(1963); A Bigi, S. Brandt, R. Carrara, W. A. Cooper, A. de Marco, 
G. R. MacLeod, Ch. Peyrou, R. Sosnowski, and A. Wroblewski, 
Proceedings of the 1962 International Conference on High Energy 
Physics (Interscience Publishers, Inc., New York, 1962), p. 247. 

22 V. Teplitz, thesis, University of Maryland, 1962 (unpub­
lished); U. Amaldi, Jr., and F. Selleri, Nuovo Cimento (to be 
published). 
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inelastic channel is not a sharp one, but the latter 
terminology is sometimes useful.) 

C. The F0*(1815 MeV) 

In .&-meson-nucleon scattering, the F0* peak at 
1815 MeV lies very close to the K*N threshold.23 More­
over, Ball and ,Frazer pointed out that the one-pion 
exchange process for K* production is very strong in 
the 1=0 state. These facts suggest that the Fo* be 
interpreted as_a virtual, or just barely bound, state of 
the 5-wave K*N system.24,25 This would require the 
Fo* to be a .D3/2 resonance in the K~+p channel. 

The quantum numbers of this peak, however, have 
not yet been firmly established. The height of about 8 
mb above a background of about 15 mb, observed in 
elastic K~p scattering, requires 7 > f . The angular 
distributions have been measured by Beall et al. and by 
Sodickson et al.,26 who find a large (cos0)5 term. This 
has led some authors27 to conclude that 7 = f ; however, 
the possibility of a resonant D3/2 combined with back­
ground terms including a small F7/2 seems quite con­
sistent with the data available at present.28 

In Fig. 12, we have drawn an approximate fit to the 
experimental data (with a 15 mb background sub­
traction) using the model described in Sec. I IC. The 
phase-space factors were taken as (&i/\A)5 for_the 
Dz/z KN channel, and k2(s,o)/\/s for the S-wave K*N 
channel, while a total width of 50 MeV was used for 
the X*. The slight asymmetry of the observed peak 
lends further support to the hypothesis that the peak 
is strongly affected by the K*N threshold.26-27 
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23 O. Chamberlain, K. M. Crowe, D. Keefe, L. T. Kerth, A. 
Lamonick, T. Muang, and T. F. Zipf, Phys. Rev. 125,1696 (1962). 

24 The objection has frequently been raised that the one-pion 
exchange force for K* production in K+N scattering in the 1 = 0 
state is equally strong, but no large peak is seen in K+n scattering 
at this threshold [V. Cook, D. Keefe, L. T. Kerth, et at., Phys. 
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channels are quite different, however; moreover, there are many 
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therefore not be surprised if the K*N threshold behavior is quite 
different in the two channels. 

26 This model has been considered further by Chia Hwa Chan, 
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16 E. F. Beall, W. Holley, D. Keefe, L. T. Kerth, J. J. Thresher, 
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37 S. L. Glashow and A. H. Rosenfeld, Phys. Rev. Letters 10, 
192 (1962), tentatively assign the F0* (1815 MeV) to a f + octet 
in the unitary symmetry scheme. 

28 W. A. Wenzel and L. Sodickson (private communications). 

many valuable discussions during the course of this 
work. 

APPENDIX 

In this Appendix, we shall determine where the zeros 
of the denominator D(s) lie for the case considered in 
Sec. I IB. The general formula for D{s) is 

D(s)= (—ik2—K2r)(72~iki) — iyik1. 

Here kj may be written as 

where Kj= \kj\, and the angle 0,- takes values on the 
four sheets as defined in (2.11). We examine whether it 
is possible for both ReD and ImD to vanish for points 
on the four sheets close to the real.? axis in the vicinity of 
the threshold $2. 

Consider, for example, a point on sheet I lying above 
the segment si<s<S2. I ts position can be specified by 
#i=2ei, 62=TT— 2e2, where ei and €2 are small and 
positive. Then, to first order in ey, 

k1^K1(l+ie1), 

^ 2 — ^ 2 ( 1 — ̂ 62), 

and D(s) reduces to 

D(s)~t(K2-X2r)(y2+e1K1)+emK1-62K1K2] 

+ * [ ( * * ^ 7 i ) * 1 - (^1+6272)^2]. 

We see that ImD can vanish only if #2r>7i. Taking 
this to be the case, and substituting for K2 in ReD, 
we obtain 

ReD={ - 7 i 7 2 # i 

— e2[y22X2r+Ki2(x2r— 7 l ) ] } / C ^ l + W 2 ) . 

Obviously for X2r>7i, ReD cannot vanish, and thus it 
is impossible to satisfy both R e D = 0 , ImD=0. 

Likewise, one can show that D(s) does not have a 
zero below the segment Si<s<S2 on sheet I. 

Similar investigations may be carried out for points 
on the other three sheets. I t may be easily deduced that 
poles close to the real axis in the region between the 
thresholds are impossible in sheet I I I as well as sheet I. 
However, for X2r<0, there is a pole in sheet IV. As X2T 

becomes positive, it can be shown that this pole 
approaches the lower end of the inelastic cut, crosses 
over it at a point just above the branch point s2 and 
so passes into sheet II.29 This is illustrated in Fig. 6 of 
the text. Unitarity is not violated in this process since, 
as seen in Fig. 4(b), a pole can move between sheet IV 
and sheet I I without appearing on the physical sheet I. 

29 The authors wish to thank M. Nauenberg for valuable 
discussions and correspondence on this point. 


